Analysis of Influencing Factors of Jiangsu Province Tourism Based on Eviews

Yang Tianming (Vettel)

International College, Jiangxi University of Finance and Economy

Abstract

Eviews software is adopted for calculation and analysis in the paper. Based on the relevant statistics of tourism industry in Jiangsu Province from 2010 to 2020, this paper uses Eviews software to establish a multiple linear regression model to study the influencing factors of tourism industry in Jiangsu Province.

Keywords: Tourism; EViews; OLS; Regression Analysis

1. Introductions

Jiangsu is the most economically developed province, and it has the second highest GDP and the highest GDP per capita in China. There are 13 cities in Jiangsu province, and they all are among the top 100 cities in China. At the same time, because of developed economy and convenient transportation, Jiangsu's tourism income ranks first among all provinces. Today's tourism is no longer affected by a single economic factor, rather than by environment, history, society, transportation and other factors. In recent years, more and more domestic and foreign tourists are willing to select Jiangsu as tourism destination. One reason for the phenomenon is that people have more disposable income, and another reason is the transportation become more and more convenient. It creates a very good geographical environment because most places in Jiangsu Province are plain and hilly. Many scholars have used many methods to study the influencing factors of tourism income, such as AHP analysis, coordination theory and ECM analysis.

In this paper, through the comprehensive analysis, it is drawn that total tourism income is mainly affected by the number of domestic tourists, the number of foreign tourists, deposits of urban residents, length of roads and length of railways. I use EViews to analyse the correlation between them.

2. Data Collection

Table 1 2005-2020 Tourism consumption data of Jiangsu province								
	Total	Domestic	Foreign	Deposits	Length	Length		
	Tourism	Tourist	Tourist	of	of	of		
	Revenue/	Numbers/	Numbers/	Urban	roads/	railways/		
Year	Billion	Million	Million	Residents/	Kilometers	Kilometers		
	RMB	People	People	RMB	(X_4)	(X_5)		
	(Y)	(X_1)	(X_2)	(X_3)				
2005	185.55	172.34	3.78	10493	82739	1598.9		
2006	228.43	199.36	4.45	11760	126900	1602.7		
2007	273.36	231.99	5.13	13786	134000	1606.9		
2008	318.54	261.22	5.44	15781	141000	1642.9		
2009	344.95	297.27	5.57	17175	142000	1642.1		
2010	462.50	355.19	6.54	19109	150000	1907.8		
2011	558.00	410.00	7.37	21810	152000	2304.0		
2012	652.40	460.00	7.92	24565	154000	2309.1		
2013	719.50	520.00	2.88	26955	156000	2554.1		
2014	814.55	570.00	2.97	28844	158000	2632.4		
2015	905.01	619.34	3.05	31195	159000	2679.2		
2016	1026.36	677.80	3.30	33616	157000	2721.9		
2017	1166.22	742.87	3.70	36396	158000	2770.9		
2018	1324.73	814.23	4.01	39251	160000	3014.0		
2019	1432.16	880.00	4.00	42359	160000	3539.0		
2020	825.06	470.00	0.77	43834	161000	3998.0		
ч т [.]	<u> </u>	1 D 11	. 15	· 10 · 17		0.5.0000		

Source: Jiangsu Statistical Bulletin on National Economic and Social Development 2005-2020

3. Model Creation

The collected data were sorted out according to Table 1. So let's define total tourism income as the explained variable Y and define the number of domestic tourists, the number of foreign tourists, deposits of urban residents, length of roads and length of railways as the explanatory variable X_1 , X_2 , X_3 , X_4 , X_5 respectively. The model is:

$$Y_{i} = \beta_{i} + \beta_{1}X_{1} + \beta_{2}X_{2} + \beta_{3}X_{3} + \beta_{4}X_{4} + \beta_{5}X_{5} + \varepsilon$$

Using the least square method in the EViews we can get the following result:

Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 00:24 Sample: 2005 2020 Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-46,70367	797.4639	-0.058565	0.9545
X1	0.139795	0.009607	14.55178	0.0000
X2	0.706949	0.508549	1.390129	0.1947
X3	0.127086	0.050179	2.532644	0.0297
X4	-0.018037	0.005808	-3.105256	0.0112
X5	-0.255551	0.507071	-0.503975	0.6252
R-squared	0.997222	Mean dependent var		7023.320
Adjusted R-squared	0.995833	S.D. dependent var		3950.339
S.E. of regression	255.0128	Akaike info criterion		14.20050
Sum squared resid	650315.3	Schwarz criterion		14.49022
Log likelihood	-107.6040	Hannan-Quinn criter.		14.21534
F-statistic	717.8896	Durbin-Watson stat		1.327309
Prob(F-statistic)	0.000000			

Fig 1 Outcome of OLS

According to the data in Figure 1, the estimated result of the model is

$$\begin{split} \widehat{Y}_i =& -46.70367 + 0.139795X_1 + 0.706949X_2 + 0.127086X_3 - 0.018037X_4 - 0.255551X_5 \\ (797.4639) & (0.009607) & (0.508549) & (0.050179) & (0.005808) & (0.507071) \\ R^2 = 0.997222 \quad \overline{R^2} = 0.995833 \end{split}$$

From the model we can know R-squared is 0.997222 and adjusted R-squared is 0.995833, showing that the model fits the samples well.

The p-value of X_1 's coefficient is 0.0000, which passes the significance test at the significance level of 1%. The p-value of X_2 's coefficient is 0.1947, which doesn't pass the significance test at the significance level of 10%. The p-value of X_3 's coefficient is 0.0297, which passes the significance test at the significance level of 5%. The p-value of X_4 's coefficient is 0.0112, which passes the significance test at the significance level of 5%. The p-value of X_5 's coefficient is 0.6252, which passes the significance test at the significance level of 5%. Therefore, the model may have collinearity.

4. Model Analysis

4.1 Multicollinearity Test

Table 2 correlation coefficient

	X1		X2	ХЗ	X4	X5
X1		1.000000	-0.330297	0.895830	0.709920	0.786030
X2		-0.330297	1.000000	-0.523384	-0.114105	-0.575374
X3		0.895830	-0.523384	1.000000	0.739384	0.966068
X4		0.709920	-0.114105	0.739384	1.000000	0.659579
Х5		0.786030	-0.575374	0.966068	0.659579	1.000000

The correlation coefficient among the explanatory variables is high and there is multicollinearity.

4.2 Stepwise Regression

Because of the existence of multicollinearity in the model, it is necessary to make a regression analysis of Y for each X separately. The results are then analyzed, and the values of each R are compared.

Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 18:23 Sample: 2005 2020 Included observations: 16							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
С	-1420.968	292.7307	-4.854181	0.0003			
X1	0.175886	0.005561	31.63066	0.0000			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.986200 0.985214 480.3461 3230253. -120.4269 1000.498 0.000000	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		7023.320 3950.339 15.30336 15.39993 15.30830 0.574672			

Fig 2 Outcome of OLS (X_1)

The model's R-squared is 0.997222, suggesting that the model fits the samples well. It's p-value is 0.0000 and it passes the significance test at the significance level of 1%.

Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 18:25 Sample: 2005 2020 Included observations: 16								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
C X2	10601.50 -8.078302	2545.990 5.335011	4.164001 -1.514205	0.0010 0.1522				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.140726 0.079349 3790.372 2.01E+08 -153.4783 2.292818 0.152220	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		7023.320 3950.339 19.43478 19.53136 19.43973 0.543051				

Fig 3 Outcome of OLS (X_2)

The model's R-squared is 0.140726, suggesting that the model fits the samples bad. It's p-value is 0.1522 and it passes the significance test at the significance level of 10%. So that I avoid using X_2 to do further analysis. Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 18:25 Sample: 2005 2020 Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X3	-1704.646 0.334943	994.5551 0.035344	-1.713978 9.476791	0.1086
R-squared	0.865138	Mean depend		7023.320
Adjusted R-squared	0.855505	S.D. dependent var		3950.339
S.E. of regression Sum squared resid	1501.624 31568254	Akaike info criterion Schwarz criterion		17.58295 17.67952
Log likelihood F-statistic	-138.6636 89.80956	Hannan-Quinn criter. Durbin-Watson stat		17.58790 1.407440
Prob(F-statistic)	0.000000	Durbin-Walso	ทารเลเ	1.407440

Fig 4 Outcome of OLS (X_3)

The model's R-squared is 0.865138, suggesting that the model fits the samples well. It's p-value is 0.0000 and it passes the significance test at the significance level of 1%.

Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 18:25 Sample: 2005 2020 Included observations: 16						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C X4	-13258.64 0.137994	5646.793 0.038093	-2.347995 3.622537	0.0341 0.0028		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.483829 0.446959 2937.737 1.21E+08 -149.4011 13.12278 0.002772	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		7023.320 3950.339 18.92514 19.02171 18.93008 0.662065		

Fig 5 Outcome of OLS (X_4)

The model's R-squared is 0.483829, suggesting that the model fits the samples poor. It's p-value is 0.0000 and it passes the significance test at the significance level of 1%.

Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 18:25 Sample: 2005 2020 Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C X5	-3900.095 4.536785	2000.984 0.797633	-1.949089 5.687809	0.0716 0.0001
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.697958 0.676384 2247.241 70701274 -145.1141 32.35117 0.000056	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter. Durbin-Watson stat		7023.320 3950.339 18.38926 18.48584 18.39421 1.045796

Fig 6 Outcome of OLS (X_5)

The model's R-squared is 0.697958, suggesting that the model fits the samples not bad.

It's p-value is 0.0000 and it passes the significance test at the significance level of 1%.

Through the help of EViews, I get some following linear regression models:

```
\begin{split} \widehat{Y}_i &= -\ 1420.968 + 0.175886X_1 \\ &(292.7307) \quad (0.005561) \\ R^2 &= 0.997222 \quad \overline{R^2} = 0.995833 \\ \widehat{Y}_i &= 10601.50 - 8.078302X_2 \\ &(2545.990) \quad (5.335011) \\ R^2 &= 0.140726 \quad \overline{R^2} = 0.079349 \\ \widehat{Y}_i &= -\ 1704.646 + 0.334943X_3 \\ &(994.5551) \quad (0.035344) \\ R^2 &= 0.865138 \quad \overline{R^2} = 0.855505 \\ \widehat{Y}_i &= -\ 13258.64 + 0.137994X_4 \\ &(5646.793) \quad (0.038093) \\ R^2 &= 0.483829 \quad \overline{R^2} = 0.446959 \\ \widehat{Y}_i &= -\ 3900.095 + 4.536785X_5 \\ &(2000.984) \quad (0.797633) \\ R^2 &= 0.697958 \quad \overline{R^2} = 0.676384 \end{split}
```

According to the results of the above regression model, X_1 's R-squared is the largest among the five models. So that we select the first regression model as a base.

Based on A, other variables were separately added to the model to carry out regression. By this step, we select the best model and add the variables separately again.

Model	Coefficients						
	С	<i>X</i> ₁	<i>X</i> ₃	X_4	<i>X</i> ₅	<i>R</i> ²	$\overline{R^2}$
$Y = f(X_1)$	1420.968	0.175886				0.997222	0.995833
$Y = f(X_1, X_3)$	-1783.178	0.143348	0.073849			0.994506	0.993660
$Y = f(X_1, X_5)$	-2338.322	0.155904			0.779435	0.994073	0.993161
$Y = f(X_1, X_4)$	-981.5543	0.178276		-0.003770		0.986379	0.984284
$Y = f(X_1, X_3, X_4)$	-244.2457	0.146305	0.086922	-0.013754		0.996630	0.995787
$Y = f(X_1, X_3, X_5)$	-1915.665	0.145678	0.058221		0.177695	0.994543	0.993179

Table 3 Ste	epwise	Regression
-------------	--------	------------

Avoiding models which have negative coefficients or can't pass t-test, we can get a best model.

$$\begin{split} \widehat{Y}_i &= -1783.178 + 0.1433485 X_1 + 0.073849 X_3 \\ (208.3701) & (0.008193) & (0.016659) \\ R^2 &= 0.994506 \quad \overline{R^2} = 0.993660 \end{split}$$

Dependent Variable: Y Method: Least Squares Date: 05/29/21 Time: 18:42 Sample: 2005 2020 Included observations: 16

Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C X1 X3	-1783.178 0.143348 0.073849	208.3701 0.008193 0.016659	-8.557744 17.49550 4.432996	0.0000 0.0000 0.0007			
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.994506 0.993660 314.5336 1286108. -113.0594 1176.530 0.000000	4506 Mean dependent var 3660 S.D. dependent var 5336 Akaike info criterion 108. Schwarz criterion 9594 Hannan-Quinn criter. .530 Durbin-Watson stat		7023.320 3950.339 14.50742 14.65228 14.51484 0.534399			

Fig 7 Outcome of OLS (X_1, X_3)

5. Model Test

5.1 Fitness Test

R-squared is 0.994506 and adjusted R-squared is 0.993660, this model explains more than 99% of samples and fits the samples well.

5.2 T-test

Given significance level α =0.05, the model has 14 degrees of freedom. We can know from the T-distribution table, t_{$\alpha/2$} =2.145. While X_1 's T-Statistic is 17.49550, it passes T test. At the same time X_2 's T-Statistic is 4.432996, it passes T test too.

5.3 F-test

F=1176.530, when the significance level α =0.05, the number of variables is 2 and the degrees of freedom is 14, we can find the critical value F_{α}=3.806. F>F_{α}, so that the regression formula pass the F-test.

5.4 Heteroscedasticity Test

F-statistic	0.710141	Prob. F(5,10)	0.6295
Obs*R-squared	4.192498	Prob. Chi-Square(5)	0.5220
Scaled explained SS	1.166891	Prob. Chi-Square(5)	0.9480

Fig 8 Heteroscedasticity Test

By white test, we can find that all p-values exceed the significance which equals 0.05. It suggests the model doesn't exist heteroscedasticity.

5.5 Autocorrelation Test

Date: 05/29/21 Time: 22:31 Sample: 2005 2020 Included observations: 16

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		5	0.398 0.313 0.051 -0.109 -0.220	0.398 0.183 -0.152 -0.175 -0.130	3.0390 5.0502 5.1072 5.3932 6.6591	0.081 0.080 0.164 0.249 0.247
		7 8 9 10	-0.296 -0.183 -0.213	-0.006 -0.129 -0.126	8.2781 11.076 12.285 14.145 15.402 16.946 17.029	0.218 0.135 0.139 0.117 0.118 0.109 0.149

Fig 9 Heteroscedasticity Test

We use partial correlation to test the model, and the results in the figure showed that the partial correlation coefficients did not exceed the dashed line in the figure. So that there was no autocorrelation in the established model. The model passed the autocorrelation test.

6. Summary

The final model is as follows:

 $\widehat{Y}_i = -1783.178 + 0.1433485X_1 + 0.073849X_3$ (208.3701) (0.008193) (0.016659) $R^2 = 0.994506 \quad \overline{R^2} = 0.993660$

Among the model, Y is total tourism revenue/ Billion RMB. X_1 is domestic tourist number/ million people. X_3 is the deposits of urban residents/ RMB. The model suggest the number of domestic tourists and deposits of urban residents both have correlations with total tourism revenue. When domestic tourist increase 1 million people, total tourism will increase 0.1433485 billion yuan. And when deposits of urban residents increase 1 yuan, total tourism will increase 0.073849 billion yuan.

7. Conclusion

Multiple regression method was used to analyse the correlations between total tourism income, the number of domestic tourists, the number of foreign tourists, deposits of urban residents, length of roads and length of railways in Jiangsu province, then the collinearity is eliminated by step analysis. The result shows that the number of domestic tourists and deposits of urban residents both have positive effects on total tourism income.

But with the development of economy and society, the government will build more roads and railways. At the same time deposits of urban residents will increase. Not only domestic tourists but also foreign tourists will visit Jiangsu province. Due on above reasons, it is hardly to estimate all collinearity between five independent variables. In addition to this advantage, the COVID-19 caused negative influences on tourism because of travel restrictions and strict VISA. On the whole, by multiple regression stepwise regression we can obtain the most suitable model to fit the samples.

References

[1] Analysis of Influencing Factors of Guiyang Tourism Based on Eviews ZHONG Hao-fan LV Hua-xian 钟皓凡,吕华鲜.基于 Eviews 的贵阳市旅游业影响因素分析

[J].武汉商学院学报,2020,34(03):5-9.

[2]Shaohe Zhang,Hui Liu,Pin Wang. Research on the Price Factor Model of Gold and Silver Futures[A]. Wuhan Zhicheng Times Cultural Development Co., Ltd..Proceedings of 2nd International Symposium on Economic Development and Management Innovation (EDMI 2020)[C].Wuhan Zhicheng Times Cultural Development Co., Ltd.:武汉志诚时代文化发展有限公司,2020:7.